		CBCS SCHEME of Technology	
USN			18AU54
		Fifth Semester B.E. Degree Examination, July/August 202 Automotive Fuels and Combustion	2
Tin	ne:	3 hrs. Max. M	larks: 100
	Λ	lote: Answer any FIVE full questions, choosing ONE full question from each mo	odule.
1	a. b.	<u>Module-1</u> List and explain types of energy sources. With a neat sketch illustrate wind energy harnessing system.	(10 Marks) (10 Marks)
2	a. b.	OR With a neat sketch, explain petroleum refining process by fractional distillation. Interpret the following: i) Diesel index ii) Amiline point iii) Cloud point point v) Isomerization.	(10 Marks) iv) Pour (10 Marks)
		Module-2	
3	a. b.	 Explain the rating of S.I and C.I engine fuels. Explain: i) LPG as fuel for S.I engine ii) Bio-diesel as fuel for C.I engine. 	(10 Marks) (10 Marks)
		OR	
4	a. b.	Explain the fuel gas analysis by gas chromatography. The following are the percentage of coal sample on mass basis $C = 82\%$. Hydroxygen = 9% and ash = 3%. Determine: i) Maximum air required for complete ii) Volumetric analysis of products of combustion. Assume 10% excess air suppli	(10 Marks) ogen = 6%, combustion ed.
			(10 Marks)
		Module-3	
5	a. b.	With a neat sketch interpret the phenomenon of knocking in S.I engine. Interpret the effect of engine variables on ignition lag in S.I engine.	(10 Marks) (10 Marks)
		OR	
6	a. b.	Explain the different stages of C.I engine with P-Q diagram. With a neat sketch illustrate the concept of delay period in C.I engine.	(10 Marks) (10 Marks)
-		Module-4	
-/	a. b.	 with a neat sketch, explain prony brake dynamometer. Briefly explain the following terms: Mechanical efficiency Volumetric efficiency Brake specific fuel consumption Indicated power 	(10 Marks)
		v) Brake power.	(10 Marks)

- 8 a. Explain the William's line method of determination of friction power of the engine.
 - (10 Marks)
 b. A 4-stroke cycle, four cylinder petrol engine was tested at full throttle at constant speed. The cylinders have diameters of 80mm and stroke 100mm. Fuel was supplied at the rate of 5-44kg/hr and plugs of the four cylinders were successively short circuited without the change of speed the power measured was as follows:

With all cylinders working = 14.7kW, with cylinder cut off = 10.1kW, with cylinder 2 cut off = 10.3kW, with cylinder 3 cut off = 10.4kW, with cylinder 4 cut off = 10.2kW. Calorific value of petrol was 41900kJ/kg. Find: i) Mechanical efficiency ii) Indicated thermal efficiency iii) Frictional power. (10 Marks)

Module-5

9

a.	List and explain the factors affecting combustion in duel fuel engine.	(10 Marks)
b.	With a neat sketch, explain the working principle of duel fuel engine.	(10 Marks)

OR

10	a.	What is a multifuel engine? What are the requirements of multifuel engine?	(10 Marks)
	b.	Outline the requirements of multifuel engine modifications.	(10 Marks)